博客
关于我
tensorflow的variable scope和name scope
阅读量:271 次
发布时间:2019-03-01

本文共 1512 字,大约阅读时间需要 5 分钟。

在TensorFlow中,变量共享机制通过variable_scopename_scope实现,无需传递引用即可在不同代码块共享变量。这种机制的核心在于tf.get_variable函数,它允许在不同的代码块中创建或检索变量。值得注意的是,tf.get_variabletf.Variable存在显著区别:后者会在每次创建时生成新的变量,并在名称中自动添加后缀以区分不同的实例。

在使用tf.get_variable创建变量或检索现有变量时,name_scope会被忽略。这意味着即使在不同的tf.variable_scope中创建变量,它们的命名空间仍会根据variable_scope的设置进行调整。以下代码示例展示了这一点:

import tensorflow as tfwith tf.name_scope('test_scope'):    test1 = tf.get_variable('test1', [1], dtype=tf.float32)    test2 = tf.Variable(1, name='test2', dtype=tf.float32)    a = tf.add(test1, test2)    print(test1.name)  # test_scope/test1:0    print(test2.name)  # test_scope/test2:0    print(a.name)      # test_scope/Add:0

然而,如果希望通过tf.get_variable创建的变量能够在其他代码块中被访问,需要使用tf.variable_scope。这样可以确保变量在不同代码块中共享:

import tensorflow as tfwith tf.variable_scope('test_scope'):    test1 = tf.get_variable('test1', [1], dtype=tf.float32)    test2 = tf.Variable(1, name='test2', dtype=tf.float32)    a = tf.add(test1, test2)    print(test1.name)  # test_scope/test1:0    print(test2.name)  # test_scope/test2:0    print(a.name)      # test_scope/Add:0

此外,tf.variable_scope还支持reuse参数。当reuse=True时,变量会在同一个scope中被多次使用,而name_scope则会被忽略:

import tensorflow as tfwith tf.variable_scope('share'):    share = tf.get_variable('share_variable', [1])with tf.variable_scope('share', reuse=True):    share_test = tf.get_variable('share_variable', [1])    print(share.name)        # share/share_variable:0    print(share_test.name)   # share/share_variable:0

通过上述方法,可以有效地在TensorFlow中管理变量的共享和命名,确保变量在不同代码块中能够被正确访问和使用。

转载地址:http://vrvx.baihongyu.com/

你可能感兴趣的文章
Nginx配置参数中文说明
查看>>
Nginx配置好ssl,但$_SERVER[‘HTTPS‘]取不到值
查看>>
Nginx配置如何一键生成
查看>>
Nginx配置实例-负载均衡实例:平均访问多台服务器
查看>>
NHibernate学习[1]
查看>>
NIFI1.21.0_Mysql到Mysql增量CDC同步中_日期类型_以及null数据同步处理补充---大数据之Nifi工作笔记0057
查看>>
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI同步MySql数据_到SqlServer_错误_驱动程序无法通过使用安全套接字层(SSL)加密与SQL Server_Navicat连接SqlServer---大数据之Nifi工作笔记0047
查看>>
Nifi同步过程中报错create_time字段找不到_实际目标表和源表中没有这个字段---大数据之Nifi工作笔记0066
查看>>
NIFI大数据进阶_离线同步MySql数据到HDFS_02_实际操作_splitjson处理器_puthdfs处理器_querydatabasetable处理器---大数据之Nifi工作笔记0030
查看>>
NIFI大数据进阶_连接与关系_设置数据流负载均衡_设置背压_设置展现弯曲_介绍以及实际操作---大数据之Nifi工作笔记0027
查看>>
NIFI数据库同步_多表_特定表同时同步_实际操作_MySqlToMysql_可推广到其他数据库_Postgresql_Hbase_SqlServer等----大数据之Nifi工作笔记0053
查看>>
NIFI汉化_替换logo_二次开发_Idea编译NIFI最新源码_详细过程记录_全解析_Maven编译NIFI避坑指南001---大数据之Nifi工作笔记0068
查看>>
NIFI集群_内存溢出_CPU占用100%修复_GC overhead limit exceeded_NIFI: out of memory error ---大数据之Nifi工作笔记0017
查看>>
NIFI集群_队列Queue中数据无法清空_清除队列数据报错_无法删除queue_解决_集群中机器交替重启删除---大数据之Nifi工作笔记0061
查看>>
NIH发布包含10600张CT图像数据库 为AI算法测试铺路
查看>>
Nim教程【十二】
查看>>